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On the basis of the VPC analysis of the H2 produced, quanti­
tative decomposition to H2 plus CO2 occurs when formic acid 
(1 ml) was added to a catalyst solution and heated in a bomb 
at 110 0C overnight. Since the same solution had been used 
previously to effect the water gas shift reaction under similar 
conditions, it is evident that any formate produced during the 
water gas shift reaction would have decomposed to H2 plus 
CO2. A more quantitative indication of the activity of this 
system toward formate decomposition is the observation that 
at 75 0C a catalyst solution prepared from 0.063 g of 
Ru3(CO)12 (1 X 10"4mole), 0.44 g of KOH plus 1.0 ml of 
H2O in 15 ml of ethoxyethanol in an all-glass apparatus de­
composed an added 0.25-ml sample of 77.5% aqueous HCO2H 
(5 X 10~3 mol of HCO2H) with a half-life of ~300 s. 

At this stage our comments regarding the possible active 
ruthenium species in the catalyst system are largely specula­
tive. The active catalyst solution has a color and IR spectrum 
different from the initial Ru3(CO)I2, thus we conclude that 
this species is not the principal one present. The complexity of 
the IR spectrum in the carbonyl stretching region (i*co 2030 
(ms), 2014 (s), 1994 (s), 1972 (s), 1952 (s, sh) cirT1) would 
suggest the presence of polynuclear carbonyl complexes, per­
haps anionic and/or hydridic as well, although the alternative 
explanation would be several simpler metal carbonyl species. 
The solid residue isolated after low temperature evaporation 
of the solvent displays the same carbonyl stretching bands with 
additionally observed bands at 2070 (w) and 1920 (m) cm - ' . 
The reaction of Ru3(CO) i2 with potassium hydroxide followed 
by acidification does yield the hydrido carbonyl species 
H4Ru4(CO) 12 and H2Ru4(CO) 13,'

2 and anions of such species 
are produced under similar conditions.13 Thus these types of 
clusters are logical candidates as components of the catalyst 
solutions. Also, the formation of hydrido anionic carbonyl 
cluster compounds has been noted for the reactions of hy­
droxide with the iridium cluster Ir4(CO)i2. In this case, the 
species produced have been observed to be active in the re­
duction of CO to formate.'' 

Continuing work in this laboratory is directed toward a more 
positive characterization of the active species in the catalyst 
solution and toward methods of improving the catalyst effi­
ciency and reaction rate by variation of reaction conditions and 
catalyst composition. 
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Conjugate Addition of Vinylcopper Complexes Derived 
from Addition of Alkylcopper Complexes to Acetylenes. 
A Stereospecific Synthesis of Trisubstituted Olefins 

Sir: 

The development of general methods for the stereospecific 
synthesis of trisubstituted olefins' has become a major goal of 
organic chemists mainly because of the occurrence in nature 
of many compounds of this class having significant biological 
activity.2 Several methods have been reported for the synthesis 
of simple, nonfunctionalized, trisubstituted olefins,3 but of 
greater importance are those methods which afford olefins 
bearing functional groups which may be employed in further 
structural transformations.4 We wish to report a new, conve­
nient, very general, and stereospecific route to functionalized, 
trisubstituted olefins. 

The conjugate addition of vinylcuprates, la, to Michael 
acceptors such as a,/3-unsaturated carbonyl compounds is a 
commonly used route to disubstituted olefins (e.g., 2a) bearing 
various functional groups (eq I) .5 6 However, this approach 
has not been practical for the corresponding trisubstituted 
olefins, 2b, in the past because the requisite disubstituted 
vinylcuprates, lb, were not as readily available as the mono-
substituted species, la. A prospective solution to this problem 
was provided in recent reports by Normant of a novel reaction 
(eq 2) in which alkylcopper complexes derived from alkyl-
magnesium halides undergo addition to simple terminal 
acetylenes to give disubstituted vinylcopper complexes, 3.7 

Reactions of 3 with various electrophilic reagents were re­
ported, including reactions with alkyl halides,7b~h to produce 
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simple trisubstituted olefins. Consequently, we sought to ex­
plore the use of this addition reaction as a source of the di-
substituted vinylcopper species, lb , required in eq 1. 

In our initial efforts to employ the addition reaction (eq 2), 
varying amounts of 1,3-dienes (4) were formed (ca. 5-20% 
yields) as by-products (eq 3). Coupling of vinylcopper com­
plexes, induced either thermally or by various oxidizing agents, 
is known to be a very facile process.7deh-8 The diene was 
formed whether the cuprous halide was purified by the com­
monly used precipitation9 or Soxhlet extraction61-10 procedures 
and even though the reactions were performed under a rigor­
ously maintained inert atmosphere. However, during the 
course of our work, House reported a method for preparing the 
dimethyl sulfide-cuprous bromide complex (5) in highly pure 
form, free of contaminants that are believed to promote de­
composition of organocopper compounds." We have found 
that the use of this dimethyl sulfide complex leads to improved 
yields of the desired vinylcopper complex (6, eq 4 ) ' 2 accom­
panied by only trace amounts of the diene (typically 0-3%). I3 

When a,/3-unsaturated carbonyl compounds are added to the 
reaction mixture containing 6, conjugate addition occurs to 
give the desired trisubstituted olefins (2b, eq 5). Some typical 
results are given in Table I.14 The reported yields are for the 
overall route starting with the Grignard reagent and using 
equimolar quantities of all reactants.15 Although the yields of 
2b have not yet been optimized, they are quite acceptable in 
considering that this pathway provides rather complex, tri­
substituted olefins in a convenient, one-flask procedure using 
simple, readily available starting materials. In addition to the 
desired olefin and a trace (0-3%) of the diene, 4, some of the 

Table I. Yields of Trinsubstituted Olefins 
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(0), (62)* 'd 

aThe values in parentheses were determined by GLC. The others 
are isolated yields. *In this run, the intermediate vinylcopper com­
plex was allowed to react with 1-lithio-l-hexyne before the (^-un­
saturated carbonyl compound was added. cThis conjugated addition 
was performed at - 7 8 °C for 4 h. dThis conjugated addition was 
performed at 0 °C for 60 h. 

other components of the product mixtures are small amounts 
of the 2-alkylolefin (R 3 R 4 C=CH 2 ) and the starting acetylene. 
The yield of desired product from cyclopenten-3-one (run 6) 
is relatively low but is typical of many reported conjugate ad­
ditions of vinyl groups to this substrate.6' 

In order to improve the yields of 2b, attempts were made to 
convert 6 into a mixed cuprate (lb) by reaction with various 
anionic species such as acetylides,6a thiolates,61 or alkoxides 
(eq 6)61 before the a,/3-unsaturated carbonyl compound was 
added to the reaction mixture.16 However, when 1-lithio-l-
hexyne, for example, is employed, improvements in yield are 
observed in only a limited number of cases (runs 5-7).17 

Normally, mixed cuprates are prepared by permitting the lithio 
derivative of the organic group to be transferred to react with 
the cuprous derivative of the nontransferable group.6a-l'q-18 In 
our work, the opposite was attempted but was unsuccessful in 
improving the efficiency of the desired transfer process in some 
cases (runs 1-4).1719 These results may bear upon the question 
of the structure of mixed cuprates.20-21 

To study the stereochemistry of our route, the reactions 
indicated in runs 1 and 2 were performed. The two products, 
which were presumably E- and Z-isomers of each other, were 
easily separable by GLC (12 ft X V8 in. 5% OV-I). Analysis 
of each reaction mixture by GLC indicated a 99.5:0.5 ratio of 
the isomers in one case and a 1.0:99.0 ratio of the same isomers 
in the other. Our route is therefore very highly stereospecific. 
We have not yet proven the stereochemistry of each product 
individually, but our assignment as shown in eq 5 is based upon 
two precedents: (1) Normant has shown that the addition of 
alkylcopper complexes to acetylenes (eq 2) is cis,7f-h and (2) 
vinylcopper complexes and vinylcuprates retain their stereo­
chemistry during various reactions, including thermal cou­
pling8 and conjugate addition.22 

In summary, this work has resulted in a convenient, ste­
reospecific route to trisubstituted olefins. The carbonyl group 
of the products may be employed in subsequent reactions, such 
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as the Wittig olefin synthesis, for the further elaboration of the 
carbon skeletons of several important classes of natural 
products. Work is in progress to optimize the yields of our re­
actions, to investigate the stereochemistry thoroughly,23 to 
study the reaction of the intermediate vinylcopper complex 
with other electrophilic substrates besides a,/3-unsaturated 
carbonyl compounds,24 and to apply our route to the synthesis 
of naturally occurring compounds. 
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Peri-Bridged Naphthalenes from 1,8-Dilithionaphthalene 

Sir: 

In recent years there has been an increasing interest in 
planar, aromatic compounds containing several sulfur or se­
lenium atoms, largely in connection with the possibly useful 
electrical, magnetic, and optical properties that charge transfer 
complexes involving these donor molecules and acceptors such 
as 7,7,8,8-tetracyanoquinodimethane (TCNQ, I) may have.1 
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